
Talanta 98 (2012) 236–240
Contents lists available at SciVerse ScienceDirect
Talanta
0039-91

http://d

Abbre

CMD, co

dispersi

scatteri

nationa

PLS, par

SQIs, so

fluoresc
n Corr

E-m
journal homepage: www.elsevier.com/locate/talanta
Energy dispersive X-ray fluorescence and scattering assessment of soil
quality via partial least squares and artificial neural networks analytical
modeling approaches
M.I. Kaniu a,n, K.H. Angeyo b, A.K. Mwala c, F.K. Mwangi a

a Institute of Nuclear Science & Technology, University of Nairobi, P.O. Box 30197, 00100 Nairobi, Kenya
b Department of Physics, University of Nairobi, P.O. Box 30197, 00100 Nairobi, Kenya
c Department of Land Resource Management & Agricultural Technology, University of Nairobi, P.O. Box 30197, 00100 Nairobi, Kenya
a r t i c l e i n f o

Article history:

Received 21 May 2012

Received in revised form

27 June 2012

Accepted 30 June 2012
Available online 11 July 2012

Keywords:

Artificial neural networks

Energy dispersive X-ray fluorescence and

scattering

Partial least squares

Soil quality assessment

Spectra modeling
40/$ - see front matter & 2012 Elsevier B.V. A

x.doi.org/10.1016/j.talanta.2012.06.081

viations: ANOVA, analysis of variance; ANN

efficient of multiple determination; DL, dete

ve X-ray fluorescence; EDXRFS, energy dispe

ng; FP, fundamental parameters; MCA, multi

l agricultural research laboratory; N-PLS, non

tial least squares; SNR, signal to noise ratio;

il quality indicators; SEP, standard error of p

ence

esponding author.

ail address: i.kaniu@gmail.com (M.I. Kaniu).
a b s t r a c t

Soil quality assessment (SQA) calls for rapid, simple and affordable but accurate analysis of soil quality

indicators (SQIs). Routine methods of soil analysis are tedious and expensive. Energy dispersive X-ray

fluorescence and scattering (EDXRFS) spectrometry in conjunction with chemometrics is a potentially

powerful method for rapid SQA. In this study, a 25 m Ci 109Cd isotope source XRF spectrometer was

used to realize EDXRFS spectrometry of soils. Glycerol (a simulate of ‘‘organic’’ soil solution) and kaolin

(a model clay soil) doped with soil micro (Fe, Cu, Zn) and macro (NO3
� , SO4

2� , H2PO4
�) nutrients were

used to train multivariate chemometric calibration models for direct (non-invasive) analysis of SQIs

based on partial least squares (PLS) and artificial neural networks (ANN). The techniques were

compared for each SQI with respect to speed, robustness, correction ability for matrix effects, and

resolution of spectral overlap. The method was then applied to perform direct rapid analysis of SQIs in

field soils. A one-way ANOVA test showed no statistical difference at 95% confidence interval between

PLS and ANN results compared to reference soil nutrients. PLS was more accurate analyzing C, N, Na, P

and Zn (R240.9) and low SEP of (0.05%, 0.01%, 0.01%, and 1.98 mg g�1respectively), while ANN was

better suited for analysis of Mg, Cu and Fe (R240.9 and SEP of 0.08%, 4.02 mg g�1, and 0.88 mg g�1

respectively).

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

The interest in SQA is currently stimulated by the increasing
awareness that soil is critical for evaluation of environmental
quality [1]. Lack of rapid and reliable SQA techniques is a critical
barrier to promote (especially) precision agriculture [2]. SQA is
routinely realized by evaluating basic SQIs which are known as
the minimum data set [3]. Compared to wet analyses, spectro-
analytical techniques for SQA are more timely, non-destructive,
and can be applied in situ [4].
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EDXRF spectroscopy is suited to SQA in these respects [5]. The
technique is however limited by extreme matrix effects, high DL
(ppm for solid samples) and it is only applicable to mostly
elements with ZZ19 for most EDXRF set-ups [6]. Since plants
absorb nutrients in their bioavailable form and thus trace levels,
estimating the total element concentration is less important [7].
The challenge in SQA using XRF spectroscopy is how to realize
accurate and simultaneous determination of micronutrients at
low (trace) concentrations, and how to analyze low-Z elements
(i.e. macronutrients) as well as the ‘bio-available’ nutrients [8].

Normally the X-ray photopeak (fluorescence) intensities are
used to evaluate the elemental concentrations using mostly the
FP or empirical coefficients methods [9] based on the assumptions
of sample homogeneity, plain surface, negligible particle size
effects and a priori knowledge of the [sample] matrix composi-
tion. The ‘‘complex’’ nature of the soil matrix imposes further
difficulties in the XRF analysis. ‘‘Complex matrix’’ with respect
to XRF is here defined as that composed of mostly low-Z

elements, refractory, inhomogeneous and those with irregular
geometry. Such samples have severe matrix effects, as well as
enhanced Compton scatter and elevated background [10]. Hence
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fluorescence SNR and analyte DL are very poor for direct SQA.
Although the scatter peaks are normally considered an inconve-
nience, this is changing after demonstration of the utility of
scatter in the analysis of light element matrices [11–13].

Multivariate chemometric techniques such as PLS and ANN are
applicable to quantitative spectroanalysis. The increased analy-
tical capability that results from incorporating chemometrics in
XRF spectroanalysis has been demonstrated in other studies
[14–18]. Compared to the classical methods like FP, these tech-
niques embody both spectrum evaluation and quantitative ana-
lysis in one step and have capacity to handle spectral non-
linearities. PLS has shown capabilities to handle non-linearities
using techniques such as N-PLS [19]. The use of ANN for non-
linear spectroscopic calibration has also been demonstrated
[20,21]. The benefits of ANN include flexibility, as they do not
require an underlying mathematical model, they can work with
noisy data or random variance, and are also robust. A major
drawback with ANN is that they are prone to overfitting [22] and
they involve a great deal of computing time.

We have studied and exploited the applicability of PLS and ANN
for rapid and direct analysis of SQIs utilizing EDXRFS spectroscopy. In
EDXRFS, during calibration a model is built based on both fluores-
cence and scatter spectra patterns, describing the relation between
the EDXRFS spectra and the analyte (for both low-Z and heavy
elements, as well as anionic components) concentrations for a set of
samples. During the prediction step, the actual analysis, the calibra-
tion model is applied to future EDXRFS spectra from unknown
samples in order to predict the same analyte concentrations rapidly
and directly (non-invasively).
2. Materials and methods

Calibration models were developed from glycerol, a liquid
‘‘organic’’ matrix simulate, and kaolin, a synthetic model clay
soil, with doped compositions of macro- (NO3

� , H2PO4
� , SO4

2�) and
micro-nutrients (Fe, Cu, Zn). Soil samples from the NARL, Kenya
with known nutrient levels were also used.

A relatively low activity (25 m Ci) 109Cd isotope source XRF
spectrometer was used for excitation of the samples. The spectro-
meter consisted of an external Canberra Model 2020 spectro-
meter amplifier, and external Model 459 power supply and ADC
Canberra Model 8075 pulse height analyzer interfaced to an in-
built S100 MCA card in a Desksaver 486 work station. The
X-ray fluorescence and scatter radiation was detected by a
30 mm2

�10 mm thick EG&G ORTEC Si(Li) detector located inside
a cryostat, 5 mm under a 25 mm beryllium entrance window. The
detector crystal had a 200 Å thick gold contact. The detector
resolution was 190 eV (Mn Ka X-ray line). Spectra were acquired
for 200 s and 750 s live time(s) in order to simulate the influence
of SNR on the performances of PLS and ANN.
2.1. Sample preparation

General requirements for preparation of calibration standards
materials are that (i) they should have a matrix that as closely as
possible matches the samples to be analyzed, both chemically and
physically, and (ii) they are homogeneous. The reason for working
with glycerol was that it is a complex organic liquid matrix that
mimics the solution (in soil) that carries the bio-available SQIs.
Glycerol was meant to investigate the possibility of direct SQA
from soil liquid filtrates, currently a challenge in XRF analysis.
Moreover, a direct EDXRFS method developed on a complex
organic liquid such as glycerol would easily find utility for heavily
organic solids prepared as pellets. Kaolin mimics a solid clay-type
soil, for the case where direct SQA is to be based on soil pellet
analysis.

2.1.1. Preparation of calibration standards in a glycerol base matrix

The pH of glycerol was adjusted to 4.1, corresponding to acidic
environment typical for most soils. For the selected macro (NO3

� ,
H2PO4

� , SO4
2�) and micro (Fe, Cu, Zn) nutrients of interest, calibra-

tion standards were prepared by spiking various analyte concentra-
tions in the glycerol base in solution. Micro (trace) nutrients were
spiked in the range 0–100 mg ml�1. For macronutrients, appropri-
ate chemical compounds in the range 0–2% were weighed and
dissolved in double distilled water and volume made to 5 ml using
glycerol. Contents in the vials were then shaken thoroughly to
ensure homogeneity. 1 ml of the prepared samples was pipetted on
a mylar film for EDXRFS analysis (Fig. 1).

2.1.2. Preparation of simulate soil samples

A calibration set design with uniform distribution in the repre-
sentative concentration space (mg g�1 level regime for micronu-
trients to percent levels for macronutrients) was used [23]. To
avoid extrapolation, the nutrient concentrations in the training
set samples spanned the full concentration ranges (0–300 mg g�1

for micronutrients and 0–3.0% for macronutrients) as expected in
typical (real) soils. The selected nutrients (Cu, Fe, Zn, NO3

� , SO4
2� ,

H2PO4
�) were milled simultaneously but randomly via measure-

ments of weights of chemical compounds using pestle and mortar
to fine powder and mixed with kaolin matrix base to the required
concentration. Fifteen samples were prepared in triplicates by
weighing approximately 0.5 g from each sample to make pellets
using a hydraulic press.

2.1.3. Preparation of field soil samples

The field soil samples were of ferrosol type, obtained from an
agricultural research field station in western Kenya. Bioavailable
analyses of the soils had been done at NARL using the standard
laboratory methods [24]. The soil samples were dried at 45 1C to
expel moisture, then ground thoroughly using pestle and mortar
and sieved with a 75 mm mesh. Approximately 0.5 g of each
sample was used to prepare three replicate pellets.

2.2. Chemometric analyses of EDXRFS spectra

ANN and PLS were used to build multivariate calibration
models between two matrices X and Y. The X (n�p) matrix
represents the EDXRFS spectra, with n measured spectra each
having p X-ray line intensities (channels). The Y (n�m) matrix
holds the concentrations of m analytes in the n samples. The
macronutrient analyses simulate soil dataset for PLS and ANN
consisted of a matrix (X45�110) in which the rows corresponded
to soil sample spectra i.e. 38 calibration samples and 7 validation
samples; and the columns corresponded to the Compton scatter
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peak energy/channel counts. The micronutrient analyses dataset
consisted of a matrix (X45�98) in which the rows corresponded to
soil sample spectra i.e. 38 calibration samples and 7 validation
samples; and the columns corresponded to the Fe–Cu–Zn fluor-
escence region energy/channel counts. The validation samples
were used to optimize the performance of the calibration models
viz. the coefficient of multiple determination (CMD) (R2) and
standard error of prediction (SEP).

For ANN, a back propagation neural network (BP-ANN) was
designed with two-layers i.e. input and output with a hidden
layer as illustrated in Fig. 2 [25].

Training functions i.e. ‘tan-sigmoid’ non-linear transfer func-
tion in the hidden layer and ‘purelin’ linear transfer function in the
output layer were used to train the feed forward networks for
function approximation (non-linear regression). The number of
neurons in the hidden layer was chosen based on the least value
of minimum square error (MSE) and network training perfor-
mance. The ANN training process consisted of four steps namely;
(i) assembling training data, (ii) creating the network object, (iii)
EDXRFS
spectra

Output
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SQIs Concentration
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Fig. 2. BP-ANN design for SQI analysis.

Source: [25].
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Fig. 3. Typical EDXRF spectra of non-digested glycerol
training the network, and (iv) simulating the network response to
the validation samples. The training process was repeated several
times (i.e. by initializing the network and adjusting the number of
hidden neurons) and the trained network that provided the best
performance was retained [26,27]. Training stopped automati-
cally after the validation error increased, to minimize model
overfitting [26,28]. After the neural network model had been
selected, the model was validated by the validation samples.

The Unscrambler 9.7 (CAMO, Oslo) and MATLAB 7.1 (Math-
works, Natick) software were used for PLS and ANN modeling
respectively. Mean-centering and auto-scaling techniques were
utilized for data pre-processing. Scaling reduced collinearity
among the variables and allowed the variables to contribute to
the model.
2.3. Application of the chemometric EDXRFS method

Owing to the differences in matrix composition between
simulate and real soils, the simulate soil calibration models could
not be used to predict SQIs in real soils. PLS and ANN models were
therefore developed for application in real ‘field’ soils utilizing the
developed conceptual framework. Eight soil nutrients were uti-
lized i.e. (C, N, Na, Mg, P, Fe, Cu, Zn) and their concentrations
utilized as reference concentrations.

The macronutrient dataset consisted of a matrix (X64�110) in
which the rows corresponded to samples spectra i.e. 40 calibra-
tion, 12 validation, and 12 independent test samples; and col-
umns corresponded to the Compton scatter peak energy/channel
counts. The micronutrient analyses consisted of a matrix (X64�98)
in which the rows corresponded to samples spectra i.e. 40
calibration, 12 validation, and 12 independent test samples; and
columns corresponded to the Fe–Cu–Zn fluorescence region
energy/channel counts.
3. Results and discussion

3.1. Analysis of glycerol samples

Representative spectra of three of [non-digested] glycerol
samples for spiked and pure glycerol samples irradiated directly
at 750 s are shown in Fig. 3.
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spiked with trace elements. (Analysis time: 750 s).
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Table 1
Summary of PLS and ANN nutrient (SQIs) prediction performances for simulate

soil validation samples.

SQI Atomic
number (Z)

Chemometric
technique used

SEP R2

NO3
� (%) 8a PLS 0.15 0.939

ANN 0.09 0.998

H2PO4
� (%) 11a PLS 0.70 0.729

ANN 0.05 0.997

SO4
2� (%) 12a PLS 0.71 0.956

ANN 0.16 0.969

Fe (mg g�1) 26 PLS 43.5 0.961

ANN 18.2 0.995

Cu (mg g�1) 29 PLS 58.2 0.912

ANN 4.5 0.999

Zn (mg g�1) 30 PLS 19.0 0.985

ANN 26.6 0.930

a Effective Z (Zeff).

Table 2
Summary of PLS and ANN nutrient (SQI) prediction performances for field soil test

samples.

SQI Atomic
number (Z)

Chemometric
technique used

SEP R2

Ca (%) 6 PLS 0.05 0.928

ANN 0.83 0.847

N (%) 7 PLS 0.01 0.969

ANN 0.02 0.800

Na (%) 11 PLS 0.01 0.977

ANN 0.02 0.796

Mg (%) 12 PLS 0.21 0.913

ANN 0.08 0.991

P (mg g�1) 15 PLS 1.98 0.982

ANN 6.70 0.920

Fe (mg g�1) 26 PLS 5.85 0.937

ANN 4.02 0.956

Cu (mg g�1) 29 PLS 0.93 0.847

ANN 0.88 0.874

Zn (mg g�1) 30 PLS 0.70 0.955

ANN 0.66 0.534

a Organic form.
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One of the features immediately apparent in Fig. 3 is the
absence of micronutrient (trace) element (Fe, Cu, Zn) fluorescence
peaks even at high concentrations (100 mg ml�1). This can be
attributed to the complex organic nature of glycerol which causes
high background, masking the fluorescence peaks during rapid
analysis (t¼750 s). The Compton peak is observed to be more
intense instead. A method had to be found with which to recover
SQI information from such subtle peaks in a typical organic liquid
matrix. Multivariate chemometric techniques viz PLS and ANN
were found to be capable of performing this task.

The scatter signal response to different NO3
� concentration levels

is shown in Fig. 4 (H2PO4
� and SO4

2� exhibited similar profiles). As
can be observed from Fig. 4, the ‘‘blank’’ i.e. pure glycerol matrix
does not correspond to the minimum scatter profile (i.e. peak
amplitude, peak width) indicating that the scatter-analyte (low Z)
concentration relationship is non-linear.

This relationship was exploited to develop PLS and ANN
quantitative models for the analysis of macronutrients in the
presence of spectral non-linearities.

3.2. Calibration performance for simulate samples

The results (Table 1) show that PLS performed well for Zn but
was not accurate (compared to ANN) for the estimation of Fe, Cu,
NO3
� , H2PO4

� and SO4
2� , as the SEP values were high. The weak

performance could be attributed to non-linearities (spectral over-
lap and low fluorescence yield of ‘‘low-Z’’ elements at low
concentration) of the SQI models to which the PLS method was
applied. ANN performed better for non-linear cases, demonstrat-
ing its capability for modeling non-linearities and hence effec-
tively correcting for matrix effects in XRF analysis. However for
Zn i.e. the most linear case, the PLS method performed better than
ANN due to the inapplicability of the non-linear ‘sigmoid’ training
functions in ANN to the analysis linear cases [23].

Optimal performance for both PLS and ANN models was
achieved at low SNR for the macronutrients. This is because at
low SNR i.e. 200 s, the most dominant spectral features (with
high count statistics) in the full spectrum are the scatter peaks;
heavy elements have minimum contribution. Predictions of NO3

� ,
H2PO4

� and SO4
2� using ANN achieved the highest overall accuracy

with high CMD (R240.9) and low SEP (0.09% for NO3
� , 0.05% for

H2PO4
� and 0.16% for SO4

2�) compared to PLS. The calibration
performance of PLS and ANN in SQA was observed to depend on
training (generalizing) capability.

The utility of spectrum pre-processing techniques i.e. mean-
centering and smoothing using the moving averages technique
(3 points) were found to reduce collinearities in PLS data matrix.
Utility of nonlinear training functions i.e. tan-sigmoid in ANN was
found to correct for nonlinearities better.
3.3. Method performance for field soil samples

The results (Table 2) show that PLS realized better accuracy for C, N,
Na, P and Zn with high CMD (R240.9) and low SEP (0.05% for C, 0.01% for
N and Na, 1.98mg g�1 for P, and 0.7mg g�1 for Zn). This shows that PLS
was able to model the calibration samples relatively well for these SQIs
compared to ANN. However for Mg, Fe and Cu, ANN performed better
with SEP of 0.08% for Mg, 4.02mg g�1 for Fe and 0.88mg g�1 for Cu. Thus
non-linear relationships (matrix effects) between nutrient concentration
and EDXRF spectra are significantly overcome using the EDXRFS method
in conjunction with PLS and ANN.

A one-way analysis of variance (ANOVA) test was conducted to
compare the estimated SQIs using the EDXRFS method in conjunc-
tion with both PLS and ANN, and the reference SQI concentrations.
The p-values for all SQIs for both techniques were (40.174) i.e.,
the minimum level of significance for which a difference in mean
concentration of the SQIs could be rejected. The mean concentra-
tions from PLS and ANN models compared to reference SQIs, were
not statistically significant at 95% confidence level (p40.05).

As can also be noted in Table 3, for six of the test soil samples
analyzed, most SQIs were estimated with considerable accuracy
compared to the reference concentrations; the higher accuracies
between PLS and ANN highlighted in bold. For C, N, Na, Cu and Zn
both PLS and ANN showed mostly similar performance. However,
for Mg, P and Fe, ANN performance was better.



Table 3
Analytical results for field test soil samples analysis by PLS and ANN.

Sample Method C (%) N (%) Na (%) Mg (%) P (lg g�1) Fe (lg g�1) Cu (lg g�1) Zn (lg g�1)

Kit-1 Reference 0.63 0.07 0.14 1.37 20 27.4 1.01 2.39

PLS 0.50 0.17 0.18 1.44 41 45.2 1.58 2.38
ANN 0.56 0.15 0.17 1.52 29 25.9 2.18 0.84

Kit-2 Reference 0.55 0.08 0.06 1.69 24 26.5 1.70 1.28

PLS 0.92 0.07 0.09 1.30 18 – 1.60 1.09

ANN 0.88 0.11 0.12 1.33 25 34.2 2.17 1.20

Kit-3 Reference 0.83 0.15 0.16 1.49 26 43.4 1.66 1.57

PLS 1.24 0.09 0.12 0.38 26 72.7 1.84 2.03
ANN 1.14 0.12 0.14 0.74 25 26.2 2.18 0.85

Kit-4 Reference 0.74 0.13 0.14 1.58 28 29.8 2.08 1.57

PLS 0.65 0.11 0.10 0.68 16 0.0 2.42 1.09
ANN 0.68 0.11 0.11 1.78 26 30.0 2.17 1.02

Kit-5 Reference 1.26 0.14 0.12 0.10 12 76.7 2.00 0.94

PLS 0.19 0.11 0.12 – 5 48.0 2.51 –

ANN 0.61 0.15 0.17 0.14 26 26.1 2.18 0.84

Kit-6 Reference 0.92 0.10 0.10 0.26 9 38.9 2.10 0.26

PLS 0.69 0.10 0.12 – 24 30.1 3.07 0.42
ANN 0.70 0.16 0.19 0.30 59 25.9 2.18 0.84

p-Values 0.755 0.326 0.240 0.501 0.185 0.567 0.174 0.592

Key: the bolds stand for the concentrations with highest accuracy achieved.
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4. Conclusion

We have utilized a new approach in XRF analysis, EDXRFS
spectroscopy enabled by multivariate chemometric techniques
namely PLS and ANN to perform rapid and direct SQA. It was
found that matrix effects corrections in EDXRFS analysis to perform
accurate quantitative analysis was equivalent to solving the non-
linear spectral effects in direct analysis of soil using PLS and ANN.
Both techniques performed well (with mostly high R240.9 and
low SEP) in the rapid prediction of SQIs i.e. both macro (low Z) and
micronutrients (high Z). ANN was more accurate for prediction of
NO3
� , H2PO4

� , SO4
2� , Mg, Fe and Cu while PLS was more accurate for

C, N, Na, P and Zn. Spectra modeling by PLS and ANN thus corrects
matrix effects and affords rapid detection and quantification of
high- and low-Z elements, and direct transformation of EDXRFS
spectra to SQIs. The capabilities of the method should be investi-
gated further and applied to test for quality assurance (QA)
characterization of other equally complex matrices.
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